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ABSTRACT

Version histories of code contain useful information and these data

are public, thanks to open source software. However, searching

through large repository histories can be complex, because there

is no specific tool to search for code changes. This paper presents

DiffSearch, the first efficient and scalable search engine for code

changes. Given a list of repositories and a query, DiffSearch can re-

trieve specific code changes in a few seconds. We design a language-

agnostic approach that we test on three popular programming

languages: Java, JavaScript, and Python, and we design a query lan-

guage that is an extension of the supported languages. We evaluate

DiffSearch in three steps. First, we measure a recall of 81.8%, 89.6%,

and 90,4% for Java, Python, and JavaScript, respectively, and an aver-

age response time lower than five seconds. Second, we demonstrate

its scalability with a large dataset of one million code changes. Last,

we perform a case study to show one of its possible applications,

where DiffSearch gathers a dataset of 74,903 Java bug fixes.
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1 INTRODUCTION

Code version histories store a large amount of useful information

about software, such as bug fixes, refactoring sessions, and optimiza-

tions. Developers and researchers can use this immense amount of

data to improve their work and provide value to the community.

For example, we can think about a large company that three years

ago made a successful change of APIs in their code base. Now, the

new manager decides for a new API transition and the software

engineers would like to find the commits from the previous transi-

tion to make a similarly excellent job. Moreover, researchers can

use specific code changes to make relevant studies on the software

engineering field. For example, Wang et al. [17] build a test smell

detector for Python. As a result, they need a collection of test smell

code changes from other languages. Due to a lack of a search tool for

code changes, they realize a manual analysis with a small dataset.
Unfortunately, as we mentioned above, an efficient tool that is

aimed to search for code search is not available. A way to search
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for code changes is to use regular expressions (REGEX) on the

commit diff output. However, REGEXs are complex to type for

specific patterns and they do not scale well on a large dataset.

Another method is the GitHub search feature1 provided in their

web interface. While, this feature searches for different version

histories of the projects, it does not consider the code changes.
This paper presents DiffSearch, the first efficient and precise

search engine for code changes. DiffSearch takes as input a query

that describes a specific change pattern and in a few seconds, it

retrieves a list of matching changes from a dataset of version histo-

ries. We want to underline three main contributions of this paper.

First, we implement a language-agnostic approach that we success-

fully tested with Java, JavaScript, and Python. Second, we design a

query language that is an extension of the supported programming

languages, adding special keywords to retrieve specific patterns.

Third, the tool scales well on large datasets, retrieving the results

in less than five seconds for a dataset of one million changes.
We perform a large evaluation in three steps to check the quality

of the results and the performance provided by DiffSearch. First,

we measure a recall of 81.8%, 89.6% and 90.4% for Java, Python,

and JavaScript, respectively. We also run a sensitivity analysis to

show that it is possible to further increase the recall with a slight

increase of the query time. Second, we analyze the scalability of

the tool with different dataset sizes, concluding that on a large

dataset of one million code changes, DiffSearch returns the results

in an average of 2.3 seconds. Third, we perform a case study that

shows that DiffSearch is able to retrieve 74,903 Java bug fixes. A

web interface of DiffSearch is available online2.

2 METHODOLOGY

2.1 Problem Statement

DiffSearch is a search engine for code search. For this reason, we

first define what is a code change and its granularity.
Definition 1 (Code change). A code change consists of two snippets

of code, one for the old code and one for the new code. These code

snippets are consecutive lines of code extracted from a single hunk

computed with a diff between a commit and its parent commit.
Second, we define the input of DiffSearch that consists of a query.

Definition 2 (Query). A query consists of two snippets of code that

represent a specific code change pattern, written using the query

language designed for DiffSearch.
For example, a query to find a JavaAPI transition fromOrg.JSON3

to Google GSON4 for reading JSON files is:
n=new JSONObject(LT<0>); → n=new JsonParser().parse(LT<0>);

1https://github.com/search
2http://129.69.217.114/diffsearch
3https://github.com/stleary/JSON-java
4https://github.com/google/gson
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Figure 1: Overview of DiffSearch.

Given these two definitions, the problem is the following:

Definition 3 (Search for code changes). Given a set of code changes

as a dataset and a query, find the subset of code changes that match

the query. A matching occurs if the code change has the same tree

structure or if the query is a subtree of a larger code change.
DiffSearch guarantees that every result of a search precisely

matches the query. Based on the query above, suppose we have:

• Code change 1 (Matching):
n=new JSONObject("21");→ n=new JsonParser().parse("21");

• Code change 2 (Non-matching, because it is not an API change):
n=new JSONObject("22"); → n=new JSONObject("23");

2.2 Approach

The DiffSearch pipeline consists of two main stages as illustrated in

Figure 1. First, there is an offline stage where the tool parses code

changes,such as Code change 1 (CC1) and Code change 2 (CC2),

from GitHub repositories and converts them into feature vectors.

Second, DiffSearch has an online phase where it receives a query

and retrieves a list of matching code changes.
More in detail, the ”Parsing & Feature extraction” component

builds the parse tree of the code changes using ANTLR45 and then

it computes a set of features based on the nodes of the parse trees.

For our example, the features encode, e.g., that a Google GSON call

replaces a Org.JSON API call and that the literal LT<0> does not

change. To enable quick retrieval with large datasets, the “Indexing”

component indexes the feature vectors using FAISS [4].
When the index is ready, DiffSearch can start processing the

queries in real time. The query goes through the two components

described in the previous paragraph and the ”Retrieval” component

uses the query feature vector to perform a fast nearest neighbor

search using FAISS to select 𝑘 candidate code changes. Our default
𝑘 is 5,000. However, this component cannot guarantee that all the
candidates really match the query, i.e., both CC1 and CC2 are prob-

ably retrieved from this component due to their similarity. For this

reason, the pipeline has another component called ”Matching &

Ranking”. In this phase, DiffSearch compares all parse tree nodes

between the query and the 𝑘 candidates to guarantee that there are
no false positives on the output. This phase is computationally ex-

pensive and it thus analyzes only 𝑘 code changes. For our example,
this component eliminates CC2, because it does not contain an API

transition, and it returns CC1 as a search result to the user. At the

end, DiffSearch shows the list of matching code changes in a ranked

list based on the score computed in the ”Retrieval” component. The

query can also be a subset of a matching code change.

5https://github.com/antlr/antlr4

3 EVALUATION

Our evaluation focuses on three main experiments described below.
Recall. As we discussed above, the “Matching & Ranking” compo-

nent guarantees that there are no false positives in the final results.

However, the “Retrieval” component cannot guarantee that there

are no false negatives when it retrieves 𝑘 candidates. For this rea-
son we measure the recall of DiffSearch in three steps. First, we

extract three datasets of one million code changes from the top 100

repositories based on GitHub stars for Java, JavaScript and Python,

respectively.6 Second, we select 80 queries from the code changes

extracted and we run DiffSearch with the “Retrieval” component.

As a result, we process the 80 queries using the “Matching & Rank-

ing” component on the full datasets. This slow experiment gives the

‘expected’ results for each query, because the “Matching & Rank-

ing” component guarantees the precision. Last, we run DiffSearch

with all the components and we compare the new results with the

‘expected’ ones. On average, across 80 queries and the parameter

𝑘=5,000, DiffSearch has a recall of 81.8%, 89.6%, and 90,4% for Java,

Python, and JavaScript, respectively, and an average response time

lower than five seconds. Increasing 𝑘 , the recall reaches 89.6% for

Java, 93.7% for Python and 95.6% for JavaScript when 𝑘=20,000,
providing an acceptable answer time lower than 20 seconds.
Scalability. From the previous datasets, we extract 10,000 to

1,000,000 changes for the three languages supported to create ten

smaller datasets. Using the same 80 queries, DiffSearch has an av-

erage answer time between 0.5 and 2 seconds without significant

differences among the different datasets and the three languages.
Case study. In this case study we use DiffSearch in a real case

scenario to build a dataset of Java bug fixes. We use twelve bug

patterns defined by prior work [5]. DiffSearch gathers a dataset of

74,903 changes among these patterns. Computing the intersection

with the results retrieved by SStuBs, DiffSearch finds 79.2% of their

changes, a result consistent with the Java recall computed above.

4 RELATEDWORK

Code search engines are popular among developers to find code

based on method signatures [14], existing code examples [6], or nat-

ural language queries [3]. Our approach relates to works on search-

ing for code that retrieve code snippets that match keywords [2, 3],

test cases [14], or partial code snippets [8], but DiffSearch works

with code changes. Moreover, there are works on mining reposito-

ries leverage version histories to extract repetitive changes [11, 13],

predict changes [16], predict bugs [7], or to learn API usages [12].

These approaches usually work with all the code changes in a

dataset, they support limited patterns [9], or they do not scale on

large datasets [10]. DiffSearch can be useful to build large datasets

to train learning approaches, e.g., fixes of particular bug patterns,

how to apply them for automated program repair [1, 15].

5 CONCLUSION

We present DiffSearch,7 a search engine for code change that can

retrieve code changes, matching a given query in a few seconds.

Moreover, we design this tool for developers and researchers that

want to analyze large version histories of code in an efficient way.

6The offline stage can take up to four hours to build an index of one million changes.
7This work was supported by the European Research Council (ERC, grant agreement
851895), and by the German Research Foundation (ConcSys and Perf4JS projects).
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