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ABSTRACT

Most modern code bases extensively rely on external libraries to

provide robust functionality out of the box. When these libraries

are updated they can sometimes introduce breaking changes in

the process, which require extensive developer maintenance. To

mitigate this we propose to use artificial intelligence to parse the

text of release notes to capture code deprecations in structured

form. This, in turn, enables us to develop an IDE plugin that can

automatically detect deprecated library usages in live code bases

and even suggest recommended fixes. We evaluated our system on

over 30 internal projects within J.P. Morgan.

CCS CONCEPTS

• Software and its engineering → Maintaining software; •

Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION

The use of dependencies in the form of libraries is extremely com-

mon, if not essential, in most software projects. Including these

libraries can come at a cost, however, as code evolves over time

for new features and changes, which require extensive developer

maintenance and can therefore present a serious time constraint

for developers. An example of a large codebase that inspired the

research for this paper is a J.P. Morgan platform for pricing, trad-

ing, risk management, and analytics that has over 2,500 developers
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contributing code regularly to a shared code base comprised of

over 10 million lines of code. The aim of this paper is to assess how

an automated AI system can understand code dependencies and

update code accordingly, thus freeing developers’ time to spend on

higher-value tasks. Our contributions include the following: (1) A

fully-automated method of sourcing API deprecations for Python

libraries by crawling release notes and using a novel transition-

based parser. (2) An IDE plugin that can automatically detect and

update deprecated references in a code base. (3) An evaluation of

the tool on over 30 projects within J.P. Morgan Chase.

2 APPROACH AND METHODOLOGY

In order to source deprecations, we utilized Sphinx2 to aid in crawl-

ing the release notes. Many Python libraries use Sphinx to automat-

ically generate standardized API web documentation. We obtained

the versions of 410 supported libraries by querying PyPI and man-

aged to get release notes for 154 libraries using the Google Search

API. We then scraped the deprecation section from each page, pro-

ducing a collection of individual deprecation descriptions. Here is

an example deprecation from our dataset, where highlighting of

code entities is given by Sphinx’ standardized HTML markup:

Deprecated parameters levels and codes in MultiIndex.copy().
Use the set_levels() and set_codes()methods instead.

For a person reading this text, this is equivalent to the following

replacements in the code:

MultiIndex.copy(levels)→ MultiIndex.set_levels(levels)
MultiIndex.copy(codes)→ MultiIndex.set_codes(codes)

The above interpretation achieves two objectives: 1) it pairs

deprecated code references on the left hand side with their cor-

responding replacements on the right hand side; 2) it makes im-

plied compositionality relationships among code references (such

as classes, parameters and methods) explicit. We chose to model

the above structure as a tree and rendered the problem of building

such tree as a generalized form of transition-based parsing [1].

Due to space limitations, we defer the in-depth description of the

inner workings of the parser to a forthcoming full paper. At a high

level, this work mainly involved a) extending the standard transi-

tion system to handle issues such as constituency, non-projectivity

and re-entrancy, building on prior work [2, 3], and b) designing in-

formative features to capture the parser configuration as well as the

linguistic structure of the sentence as to enable effective selection

1https://github.com/nirmalyaghosh/kaggle
2https://www.sphinx-doc.org/en/master/examples.html
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Figure 1: Example run of the plugin for a Kaggle project1. Boxed in red one can see the plugin detecting weak warnings (partial

matches) or errors (full matches). In the green box the plugin offers a quick-fix button to automatically update the reference.

of parsing actions at inference time, using a standard supervised

classifier with simple beam search.

The resulting tree is then passed as JSON to an IntelliJ plugin

we built, in which a project’s source code is inspected statically.

The inspection algorithm goes through each reference in the code

and attempts to match it to the specification provided by the depre-

cation tree. If the reference matches the specification exactly, for

example, the argument levels is passed to the method copy in
the namespace MultiIndex, then it is highlighted by the IDE as an
“error”, allowing for a fully automatic fix, if one is available. Oth-

erwise, if the match is partial e.g., only the method name matched

but the invoking namespace could not be resolved (due to Python’s

dynamic type system), the reference is highlighted as a “warning”

— prompting a developer to take a closer look.

3 SYSTEM EVALUATION

We annotated gold trees for 426 deprecations from the release notes

of popular data science libraries, such as pandas. As a baseline for

evaluating the parser, we used a heuristic that splits all encountered

code references into left and right hand side sets, relative of theword

“deprecated”. Since this approach is not compositional, wemeasured

simple intersection-over-union of produced code tokens against the

gold ones in each set. We ran the parser in cross-validation mode,

measuring average weighted subtree overlap with gold deprecation

trees. The parser outperformed the baseline by nearly two-fold

in terms of the overall score (31.3 vs 16.9), on method depreca-

tions (45.9 vs 21.8), and, most notably, on compositionally difficult

parameter deprecations (15.3 vs 1.0), across all libraries.

To assess the plugin’s usability in a realistic setting, we ran

it on 33 internal repositories, using golden deprecation trees as

input. In total, the plugin highlighted 342 potential deprecations

from the following libraries: pandas, numpy, matplotlib and net-

workx. During qualitative analysis, we found many promising de-

tections, especially for the exact matches. For instance, the reference

json_normalize() moved from the module pandas.io.json to
the top-level pandas in version 1.0, and the plugin was able not
only to highlight this, but to automatically update the statements

of the form from pandas.io.json import json_normalize to
from pandas import json_normalize. On the other hand, par-
tial matches proved much more ambiguous due to the lack of type

information, ultimately resulting in a true positive rate of only

about 20%. This validates our design choice of implementing partial

matches as a developer prompt rather than an automatic fix. In

terms of the overall distribution, partially matched deprecations

accounted for the majority of all detections. Yet, we believe both

types of detections provide valuable reduction in the number of

code occurrences the developer has to examine.

4 CONCLUSION

We have presented a system to automate the challenging task of up-

dating deprecated library usages in a Python project. The results of

evaluating the underlying parsing technology on a labeled dataset,

as well as the system as a whole on real J.P. Morgan projects are

encouraging and open up avenues for future work. Having a system

that can automatically build a knowledge base of code deprecations

found in libraries and offer fixes is a valuable tool that can alleviate

a project’s maintenance in the long run and improve its quality.

Disclaimer. This paper was prepared for informational purposes

by the Artificial Intelligence Research group of JPMorgan Chase

& Coȧnd its affiliates (“JP Morgan”), and is not a product of the

Research Department of JP Morgan. JP Morgan makes no represen-

tation and warranty whatsoever and disclaims all liability, for the

completeness, accuracy or reliability of the information contained

herein. This document is not intended as investment research or

investment advice, or a recommendation, offer or solicitation for

the purchase or sale of any security, financial instrument, finan-

cial product or service, or to be used in any way for evaluating

the merits of participating in any transaction, and shall not consti-

tute a solicitation under any jurisdiction or to any person, if such

solicitation under such jurisdiction or to such person would be

unlawful.
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