
Simdex: A Simulator of a Real Self-adaptive Job-dispatching
System Backend

Martin Kruliš
Charles University, Prague, Czech

Republic

krulis@d3s.mff.cuni.cz

Tomáš Bureš
Charles University, Prague, Czech

Republic

bures@d3s.mff.cuni.cz

Petr Hnětynka
Charles University, Prague, Czech

Republic

hnetynka@d3s.mff.cuni.cz

ABSTRACT

Self-adaptive systems comprise a complex domain of computing

systems that are intensively studied but sparsely employed in real

applications. Furthermore, recent trends in computer science are

steering towards machine learning which has yet to fully pene-

trate this domain. We would like to present Simdex — a realistic

simulator of the self-adaptive backend that dispatches computing

jobs among multiple workers. It is based on ReCodEx, a system

for semi-automated evaluation of coding assignments that have

been used for the past 5 years at our School of Computer Science.

The simulator replays the workload logs recorded from ReCodEx

over that period which provides a quite thorough evaluation and

near-to-real feedback for the simulated scenarios. Furthermore, the

design of the simulator is highly modular and allows the implemen-

tation of different self-adaptive controllers, including ones based

on machine learning, as we demonstrate in our examples.

CCS CONCEPTS

• Software and its engineering → Simulator / interpreter; •

Computing methodologies → Self-organization; • Computer

systems organization → Self-organizing autonomic comput-

ing.

KEYWORDS

Job dispatching, simulator, self-adaptive, machine learning

ACM Reference Format:

Martin Kruliš, Tomáš Bureš, and Petr Hnětynka. 2022. Simdex: A Simulator

of a Real Self-adaptive Job-dispatching System Backend. In 17th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS ’22), May 18–23, 2022, PITTSBURGH, PA, USA. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3524844.3528078

1 INTRODUCTION

Machine learning is gradually becoming an important enabling

technology for self-adaptive systems. It helps especially in cases

when the model or process governing the environment, towards

which the system self-adapts, is unknown. The lack of a model typ-

ically causes two problems: (a) the actual state of the environment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9305-8/22/05. . . $15.00
https://doi.org/10.1145/3524844.3528078

is unknown, and thus it is difficult to choose an adaptation tactic

correctly, and (b) it is not clear how the state of the model changes

based on an action of the system. As a result, it is challenging to

design adaptation rules to govern such a system.

Machine learning overcomes this problem by introducing the

ability to extrapolate and remember relevant aspects of the environ-

mental model that are based on observations of the environment

(typically collected by sensors). Similarly, it can be used to predict

associated hidden properties (e.g., energy consumption) that are

not directly observable [9].

However, the greatest challenge of machine learning-based adap-

tation in existing systems lies in the fact that it cannot be easily

trained without having real data. Pure simulation of a system typ-

ically does not give generalizable results because the simulator

has to contain (and simulate) the model that the machine learn-

ing method is to learn. Thus, when researchers evaluate such an

approach, they first create a model of an environment, hide it in

a simulator, and then use the machine learning approach to re-

discover the model. Though there is often no other way for the

evaluation, this approach is plagued with threats to validity.

A proper evaluation requires that the data are collected from a

real environment and thus reflect some hidden model with all the

complex organic relationships between entities in the environment

that would be dismissed or overly simplified in an artificial simu-

lation. Unfortunately, this observation also limits the validity of

existing artifacts (such as those collected so far at SEAMS), which

are often based purely on simulation, for evaluating systems that

employ machine learning. It is our belief that an artifact for evalu-

ating machine learning-based adaptation methods should at least

utilize real-world data (which provides the “real hidden model” part

of the artifact) if the real system cannot be used directly for the

evaluation (which is often the case). In this paper, we present such

an artifact that contains both — a simulator and a dataset collected

from actual users.

The artifact featured here is based on ReCodEx [7], a system for

evaluation of coding assignments that is based on well-known prin-

ciples of software testing common in software development. The

part of ReCodEx that could benefit the most from self-adaptation

methods is the backend of the system. It comprises a pool of work-

ers and a broker that dispatches evaluation jobs to these workers.

ReCodEx has been deployed at our faculty for nearly five years

now (while the experience we have with similar systems extends

over 15 years), and we were able to collect and compile a dataset

of job-evaluation logs, which are used by the artifact for realistic

workload simulations.

The job-dispatching scenario is well known in modern systems,

making this use case easy to adopt and explain in scientific work.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Martin Krulis, et al.

Furthermore, it permits different combinations of optimization cri-

teria to be tested, such as evaluation latency, throughput, or power

consumption of the workers. It is difficult to write a generic job-

dispatching strategy that would work optimally in a system where

the workload parameters change over time, so we have adopted the

self-adaptive approach based on a standard MAPE-K loop that mon-

itors, analyze, and optionally executes modifications of the running

system over time. The proposed simulator allows one to test vari-

ous experimental self-adaptive strategies with selected evaluation

metrics.

Our proposed testbed contains the following key features, which

make it quite special:

• A highly modular simulator, where the user may inject own

dispatcher and self-adaptive controller. The user may select

a subset of prepared evaluation metrics or provide custom

modules that compute arbitrary metrics.

• The simulator replays the log of jobs collected from an ex-

isting fully-deployed system, making the evaluation more

sound and better resisting the threats to validity.

• The simulator is written in Python and fully ready to eas-

ily incorporate modern machine learning tools like Tensor-

Flow [1].

Both the simulator and the dataset, along with the evaluation ex-

amples, are publicly available at GitHub1.

The paper is organized as follows. Section 2 contains the expla-

nation of the system that is being simulated. The testbed artifact

that comprises the simulator and the dataset is detailed in Section 3.

Three experiments based on two scenarios (described in Section 4)

were implemented to evaluate the usability of the testbed. Section 5

overviews the related work and Section 6 concludes our paper.

2 BACKGROUND

Our simulator is based on a system called ReCodEx [7] which is a

tool for semi-automated evaluation of coding assignments with a

web frontend. This tool has been used at our university for several

years, which allowed us to gather user experience as well as actual

data that can be used in our simulator to evaluate experiments

under realistic workloads. The system works as follows.

Teachers prepare coding exercises and assign them to selected

groups of students (e.g., students visiting a particular course). The

students solve the assignments individually and submit their solu-

tions as source codes. The solutions are compiled and executed in a

specialized sandbox that ensures secure evaluation (using the Linux

kernel control groups [4] to create isolated containers) and also

measures basic performance characteristics such as execution time

and memory consumption. The execution of compiled solutions can

be repeated multiple times for different testing scenarios (inputs,

launch arguments, limits). Data gathered from these executions

(correctness of the outputs, indicators of whether the performance

meets given time and memory limits) are subsequently used to cal-

culate the correctness of the solution, which is given to the student

as feedback and may be used for grading as well [5].

One of the greatest benefits is that the solutions are evaluated

almost instantaneously in most cases, and thus the students can

receive the feedback in an interactive manner, which would not

1https://github.com/smartarch/simdex

be possible if the code was evaluated manually by the teachers.

Furthermore, the teachers do not have to bother with technical

details such as testing whether the solution compiles or correctly

handles corner cases, and they can focus on more high-level as-

pects such as the solution semantics or the quality of the student’s

coding style. The presence of time and memory limits also allows

rough classification of the asymptotic behavior of the solutions

by preparing inputs of incremental sizes and carefully comparing

measured characteristics with expected values.

Another advantage of ReCodEx is that it can accommodate a

wide variety of coding assignments ranging from trivial tasks for

beginners to complex exercises required by advanced courses such

as machine learning, parallel programming, or compiler design. Fur-

thermore, ReCodEx supports 18 different programming languages

ranging from mainstream such as Java, C++, or Python to more ex-

otic ones like Haskell, Rust, or Scala. In addition, it provides means

to adjust the compilation and testing process for individual exer-

cises easily (e.g., combining Bison and Flex with C++ compilation).

For our research, we have focused on the process of evaluation

of submitted solutions which can be generalized as job dispatching

problem. The evaluation itself is performed by independent work-

ers to ensure scalability and isolation; however, the aforementioned

properties of the system makes the dispatching of individual evalu-

ation jobs to the workers quite difficult as it need to satisfy multiple

criteria such as throughput, latency, or technical constraints de-

fined by the coding exercises. Furthermore, the workload of the

system changes significantly over time which makes it particularly

interesting from the perspective of self-adaptive systems.

2.1 Problem formalization

We have formalized the code evaluation process for the purposes

of simulation as follows. When an evaluation job (or simply job)

is created (i.e., when a user submits new source code), it is imme-

diately passed to a dispatcher module which is implemented as

the ZeroMQ2 broker in ReCodEx. The dispatcher examines the job

metadata and assigns the job to an appropriate worker. Each worker

has a single queue and processes the jobs at its own pace in the

first-come-first-served order. Once a job is assigned to a queue, it

cannot be reassigned. Figure 1 depicts the schema of the system.

Figure 1: Schema of ReCodEx backend job dispatching

We have decided to ignore several issues that may arise in the

real application to simplify the problem and the examples, namely:

2https://zeromq.org/

Simdex: A Simulator of a Real Self-adaptive Job-dispatching System Backend SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

• Jobs and workers in ReCodEx are labeled with worker group

tags that specify job requirements and worker capabilities

(e.g., special HW or installed libraries). We have treated all

workers as identical (i.e., a task can be assigned to anyworker,

and it will take the same amount of time to evaluate it) in

the rest of the paper, although the worker group identifier is

present in the data (so it may be used in future work).

• In a real setup, the workers may fail (e.g., be rebooted) in

the midst of evaluation. We have completely ignored this

possibility in the simulation, and the data do not comprise

failed jobs since they are sporadic.

• There may be some overhead concerning the job dispatching

and the evaluation results gathering. The simulation itself

does not account for any overhead, but it can be incorporated

by adding a small constant (e.g., 0.1s) to all job durations as
compensation.

2.2 Self-adaptive approach

There are several objectives the system may need to optimize for,

in particular:

• If a job is enqueued and other jobs are already in the queue,

it is delayed until all previously submitted jobs are processed.

One of the objectives may be the minimization of the average

delay.

• If the workers are hosted on independent machines, we can

shut them down when the system is underutilized to save

power (or costs in the case of virtual machines).

• Besides the job delay, an exact yet quite detached metric, we

can focus more on the user experience. In particular, short

jobs should have a minimal delay to make the appearance

of an interactive system, whilst long-running jobs may be

delayed significantly more since it is unlikely the user would

not wait for them eagerly. Unfortunately, this is a somewhat

ambiguous matter since the threshold between short and

long-running jobs is subjective and may differ significantly

among users.

The presented objectives are highly affected by the job dispatch-

ing algorithm and worker management. Unfortunately, the actual

workload of the system may not be easily predicted due to the wide

variety of job types. Furthermore, the workload is heavily biased by

daytime, assignment deadlines, users’ sentiment, and other factors

that are hard to interpret or predict. Therefore, it is challenging

to design an explicit algorithm that optimally performs under all

conceivable situations.

The simulation testbed presented in this paper provides an ex-

perimental platform to verify whether a self-adaptive approach

would perform better than a static algorithm when optimizing for

selected objectives. We aim to make this platform as flexible as

possible to work with different optimization objectives and differ-

ent self-adaptive strategies beyond the original needs of ReCodEx,

whilst the evaluations themselves should remain comparable since

they are based on the same real workload logs.

3 TESTBED

Our testbed comprises a simulator of the ReCodEx backend (i.e., job

dispatcher, job queues, and workers) and a dataset extracted from

the system logs (job metadata). The simulator replays the job logs

whilst applying a user-provided self-adaptive dispatching strategy

and using selected metric collectors to measure the quality of the

tested strategy.

3.1 Simulator architecture

The simulator has a highly modular architecture. The two most

important modules are dispatcher and self-adaptive controller, which

are expected to be provided by the author of the experiment. The

dispatcher implements a static dispatching algorithm — i.e., an

algorithm that uses only a static configuration and the actual state

of the workers to decide in which queue a job should be dispatched.

The configuration is divided into two parts:

• worker queue properties,

• internal configuration of the dispatcher.

This separation was made only to make the simulator more conve-

nient for various types of experiments and scenarios since some

information are better kept with the workers (e.g., whether a worker

is running) and some are better kept with the dispatcher (e.g., a

model that helps predict the duration of newly spawned jobs). The

overall schema of dispatching is depicted in Figure 2.

Figure 2: Self-adaptive simulator of job dispatching

The self-adaptive controller module analyses the system and

optionally changes the behavior of the dispatcher by altering its

internal configuration or properties of the worker queues. Although

the controller can be implemented using various paradigms, we

have relied on the classic MAPE-K loop [6] concept. In detail, the

simulation runs in a single thread synchronously, and the interface

of the self-adaptive controller is a single do_adapt method. It is
invoked periodically in fixed intervals (as the simulation time ad-

vances) and just before each job is dispatched. The interface is used

both for monitoring, analysis, and planning as well as for the exe-

cution of modifications. The controller module decides which steps

of the MAPE-K loop are performed in each do_adapt invocation.
The interface for reading and changing worker queue properties

is straightforward — each property is identified by a string key

and may hold any value; thus, the interface is basically a getter

and setter for a dictionary. The interface for the internal dispatcher

configuration is designed by the author of the experiment (since

both the dispatcher and the self-adaptive controller are created

together). The technical details of the interfaces and the modules

are specified in the simulator documentation.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Martin Krulis, et al.

3.2 Dataset

The dataset provided alongwith the simulator is basically a log of all

jobs executed by the backend workers. A single record corresponds

to a single evaluation of a source code submitted to the system.

The job log record contains essential metadata, like the identifier of

the exercise, the timestamp when the code was submitted, or the

identifier of the user who made the submission. It also collects data

from the real backend, most notably the duration of the evaluation

process, which indicates how long the worker was occupied.

The dataset is split into two CSV files — regular jobs and reference

solutions jobs. Students submit regular jobs while teachers submit

reference solutions to verify the exercises are correctly set and

determine the suitable time and memory limits. Although both job

types are evaluated by the same backend in the real system, we feed

only the regular jobs into the simulator for the sake of simplicity.

However, we provide the reference jobs metadata so they can be

used as additional inputs for the estimator that helps us predict

regular job duration based on their exercise affiliation. The number

of reference jobs is very low (compared to regular ones), and thus

this simplification does not hinder our objective of simulating a

realistic workload.

solution_id identifier of the solution which corresponds

to one instance of the submitted source code

(one solution may be re-evaluated if neces-

sary — i.e., multiple jobs may have the same

solution ID)

group_id identifier of a lab group of students the au-

thor is attending

tlgroup_id identifier of top-level group which corre-

sponds to a course the author is attending

exercise_id identifier of an exercise being solved

runtime_id identifier of the programming language and

runtime environment used in the solution

worker_group_id an abstraction that specifies requirements

for special hardware or software the as-

signed worker must have installed

user_id identifier of the author of the solution

spawn_ts unix timestamp of the job creation

limits sum of time limits imposed on all the tests

of the corresponding exercise (which can

give us rough estimate for the maximal job

duration)

cpu_time bool flag indicating whether CPU time

(rather than wall time) was used for the time

limits

correctness relative correctness (in [0, 1] range) based
on which tests were passed

compilation_ok bool flag indicating whether the solution

passed the compilation phase (if not, no

tests were actually executed)

duration total time of the evaluation

Table 1: Overview of job metadata properties

The individual properties of a job are summarized in Table 1.

The properties in the first part are available the moment the job is

spawned, and the properties in the second part are added after the

evaluation. All the properties are present in the logs right away, so

the author of the simulation experiment must refrain from using

the latter properties (like duration) in the dispatching algorithm if

the simulation claims to be realistic.

All identifiers in the dataset have been transformed using a

hashing function to ensure sufficient anonymization. Internally, the

simulation transforms the string hashes to sequentially assigned

integers when the data are loaded to simplify their processing

further.

Perhaps the most crucial property is the duration of a job since

it determines how long it will be occupying the worker. Please

note that the duration values collected in the logs are not entirely

accurate as they represent the sum of the time consumed by indi-

vidual evaluation tasks; however, it does not take into account the

overhead of dispatching the job, starting the tasks or assembling

their results. Furthermore, the duration time depends heavily on the

hardware configuration of the workers. Therefore, it may be valid

to perform linear transformations of the duration values (where

multiplicative constant may simulate hardware of different speeds

and additive constant represents the overhead) to simulate realistic

yet slightly different scenarios.

4 EXAMPLES AND EVALUATION

We have prepared two examples of experiments to demonstrate

the capabilities of the simulator. The first one is a basic tutorial

based on the simple utilization of worker queue properties to affect

the dispatching process. The second one aims at demonstrating

how to integrate machine learning into the self-adaptive process to

improve user experience regarding the system latency.

4.1 Example 1: Saving power

The first example draws on a very common problem of saving

operational costs (e.g., consumed electric power) whilst maintaining

reasonable availability of provided services (mainly the latency of

job evaluation). It is based on the assumption that the workers are

hosted on independent servers, and each server can be shut down

and woken up by the self-adaptive module.

In the simulator, the state of the workers is determined by the

‘active’ property of the worker queues. If the queue is active,

the dispatcher may enqueue jobs in it; otherwise, it is closed for

business, and the corresponding worker is assumed to be shut down.

For the sake of simplicity, we have decided that a queue may be

changed to an inactive state only if it does not contain any jobs.

Furthermore, the change of the active state is instantaneous in the

simulation, which is not entirely realistic from the hardware point

of view, but it represents a simple abstraction that demonstrates

the main principles of the simulator whilst upholding the objective

of this example.

4.1.1 Experimental setup. The dispatcher uses a straightforward

static algorithm that operates only with the properties of the queues.

For each job, the following steps are performed:

(1) select all active queues 𝑄𝑎 ⊆ 𝑄 (𝑄𝑎 set is expected to have

at least one item)

(2) choose 𝑞 as the shortest queue of𝑄𝑎 (i.e., the queue with the

least jobs)

Simdex: A Simulator of a Real Self-adaptive Job-dispatching System Backend SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

(3) dispatch job into the queue 𝑞

The self-adaptive controller monitors the number of jobs in

individual queues and activates/deactivates queues based on the

workload. The decision process has only two rules:

(1) If at least one queue contains more than one job (i.e., at least

one job is being delayed) and some of the queues in the pool

are still inactive, select one inactive queue and make it active.

(2) Otherwise, if no queue contains more than one job and more

than one queue is idle (has no jobs), deactivate one idle queue.

This rule also ensures that there is always at least one queue

active at all times (assuming at least one queue was active at

the beginning).

4.1.2 Results. Tomeasure the improvement of a self-adaptive strat-

egy, we need to compare it with a referential baseline. The simulator

can be executed without the self-adaptive module (simply omitting

it in the configuration) and run only with the static dispatcher. In

this case, we use the exact same dispatcher, but (without the SA

module) the number of active workers is set at the beginning and

fixed for the whole experiment. The two selected baseline runs were

conducted with 1 worker (minimum) and 4 workers (maximum)

active (the self-adaptive strategy also uses a pool of 4 workers).

There are two criteria being measured — the delay of the jobs and

the overall power consumption. In case of delay, we gather statistics

for all jobs and then compute average andmaximal delay. The power

consumption is computed as the time the servers were running

(the queues were set as active) relatively to the consumption of

one worker (e.g., value 2.0 means that two workers were active on
average).

method avg. delay max. delay power

1-worker 311.66 s 36545 s 1.0
4-worker 9.123 s 11130 s 4.0
self-adaptive 14.17 s 13284 s 1.05

Table 2: Results of power saving self-adaptive strategy and

two referential baselines

The 1-worker baseline has the lowest possible power consump-

tion, but the job delays get rather high as they are forced into

a bottleneck. The 4-worker baseline has the lowest delays possible

(if the 4 is maximum), but it consumes 4× more power. The self-

adaptive strategy seems to find a rather good compromise between

the two criteria as it uses only 5% more power than the theoretical

minimum, and the job delays are only slightly higher than in the

case of the 4-worker setup.

We would like to emphasize that the main objective of this ex-

periment was not to design the best solution possible but rather to

demonstrate the simulator using straightforward and comprehen-

sible algorithms. It is not difficult to devise a more elaborate (but

also more complex) solution that would yield better results.

4.2 Example 2: Machine learning

The second example aims at improving user experience by focusing

on the latency of job evaluation in particular. The inspiration for

the metric comes from an observation that simpler assignments are

evaluated quickly (so the results will be available almost immedi-

ately), whilst complex assignments may take a long time to evaluate

(so the users will not wait for them actively). In other words, we cal-

culate the acceptable delay of a job based on its expected duration

(the longer the duration, the longer the acceptable delay).

Since the metric would be difficult to understand in terms of

absolute numbers, we have defined three categories that are used

to label the quality of each evaluation:

• on time — the delay is acceptable within the expectations

(the delay is less than 1.5× expected duration)

• delayed— the job was noticeably delayed, but the delay was

still reasonable (the delay is less than 3× expected duration)

• late — the delay was quite large and the user may perceive

this as a problem (the delay is above 3× expected duration)

The above definitions operate with the term expected duration.

The expected duration is computed as an average of all preceding

jobs of the same exercise and runtime that passed the compilation

phase. This value will give us smoother estimates as it filters out

failed jobs (which are terminated quickly) and moderates the impact

of solutions of lesser quality (which might take longer to evalu-

ate). The actual constants that define the categories were selected

based on practical experience from ReCodEx as well as to keep the

individual categories reasonably sized w.r.t. data characteristics.

4.2.1 Experimental setup. Unlike in the previous example, all queues

remain active for the whole time since the power consumption op-

timization is not an objective. Each queue has optionally a ‘limit’
property which is configured statically and used by the dispatcher

to restrict the jobs assignment into the queues based on its expected

duration. In particular, we use 4 queues, 3 of which have the limit

set to 30 seconds, and one has no limit.

The dispatcher employs the following decision process to assign

a job:

(1) compute a duration estimate 𝑒 of the incoming job based on
given estimation model

(2) select all active3 queues 𝑄𝑎

(3) filter out candidates 𝑄𝑐 ⊆ 𝑄𝑎 which have their limit greater

than 𝑒 or which have no limit at all

(4) choose 𝑞 as the shortest queue of𝑄𝑐 (i.e., the queue with the

least jobs)

(5) dispatch job into the queue 𝑞

The setup should either make sure that 𝑄𝑐 is always not empty

(e.g., by providing at least one queue without limit) or implement

some form of fallback for the third step (e.g., that𝑄𝑐 hold the queues

where the limit is exceeded by 𝑒 the least).
The most important part of this demonstration is the estimation

model used in step 1. We assume that this model is trained by

the self-adaptive controller and expresses the focal point of the

configuration that affects the behavior of the system. In the example,

we have implemented two models based on the machine-learning

paradigm:

• Simple statistical model, which is based on the same princi-

ple as the evaluation metric — i.e., utilization of history of

previously processed jobs (including reference solutions). It

3Although in our setup all queues are active the whole time, the algorithm is ready for
future alterations.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Martin Krulis, et al.

computes an average duration from jobs that passed compi-

lation categorized by their exercise and runtime affiliations.

• Neural-network model uses a standard artificial neural net-

work that is trained as a regression predictor. The neural net-

work uses the same inputs (exercise and runtime identifiers)

in hot-one encoding, one hidden layer (ReLU activation), and

the final layer with exponential activation.

The neural-network model was implemented in TensorFlow [1],

a popular framework for machine learning. One of the intentions

of this example is to demonstrate how to utilize well-established

tools in combination with our simulator.

4.2.2 Results. The proposed self-adaptive strategies were com-

pared with a static baseline (i.e., dispatcher without a self-adaptive

controller) that uses job time limits (divided by 2) to estimate their

duration.

As a second baseline, we have run an experiment with an oracle

model that does not use machine learning but violates the data

causality and reads the actual job duration from the log before

the job is duly processed (i.e., it simulates an ultimate prediction

model by looking into the future). This experiment has no realistic

basis, but it gives us the upper bound for other models and helps us

determine how much the job duration estimator affects the quality

of the user experience.

method on time delayed late avg. delay

no-SA (base) 382, 615 2461 13, 226 89.47 s
statistics 387, 502 1928 8872 62.09 s
NN regression 387, 216 1928 9158 55.4 s
oracle (base) 388, 244 1940 8118 52.18 s

Table 3: User-experience results for two machine-learning

strategies

Table 3 summarizes the results of the two demonstrated machine-

learning models and the two baselines. Both implemented models

show similar improvement in the user-experience quality over

the baseline. Also, both models are quite close to the theoretical

maximum for a givenworker configuration established by the oracle

baseline.

5 RELATEDWORK

We went through more than five years of the SEAMS artifacts, and

we have not found any closely similar ones. Nevertheless, there are

several artifacts that bear at least some similarities. Curiously, all

of them target the adaptation (such as scaling, load balancing, etc.)

in service-oriented and web-based systems.

K8-Scalar [3] is a workbench for evaluating self-adaptive ap-

proaches to auto-scaling container-orchestrated services. It focuses

on containerization and monitoring within a cluster but similarly

to our artifact, it adapts to the incoming requests to the system.

These requests are generated as specified in a workload profile,

which contrasts with our artifact, which also contains an extensible

real-life dataset.

Another similar artifact is SWIM [8] which simulates a generic

multi-tier web applicationwith a load-balancer, multipleweb servers,

and a database management system. SWIM allows the creation of

different adaptation modules that control the adaptation of the

system for the incoming requests. It also contains two datasets of

recorded real-life workload. These datasets are in the form of a se-

ries of numbers specifying how long to wait before sending the next

request. This contrasts with our dataset that contains data collected

over several years and offers rich meta-data of the requests.

Hogna [2] is a platform for the deployment and self-management

of web applications in a cloud. It primarily offers its users to pro-

vide their own analyzer and planner components and implement

adaptation like load balancing, etc. No dataset is included, and a

load generator is employed.

Yet another similar artifact is a Hadoop-Benchmark [11] for

evaluating adaptation strategies in applications deployed in Hadoop.

Again, adaptation primary targets load balancing, throughput, etc.,

and existing Hadoop benchmarks are used as datasets.

Tele Assistance System (TAS) [10] is also a related artifact. It of-

fers a platform for the evaluation of adaptation strategies in service-

oriented systems, which are composite services composed of multi-

ple atomic services. Adaptation targets choices with the composite

services, how the atomic ones should be chosen based on requests,

reliability of the atomic services, their cost, etc. Instead of a dataset,

a generator of requests (and their QoS parameters) is employed.

6 CONCLUSION

The paper presents a testbed artifact that comprises a simulator of

a job-dispatching system and a dataset collected from logs of a real

system. The simulator is designed to be highly modular, so it can

be easily adapted for various experiments with self-adaptive strate-

gies. Since it replays actual logs, it provides a stable and accurate

evaluation of these experiments.

We have implemented two examples: The first is a quite frequent

scenario where workers are being shut down or woken up based

on the actual workload to save resources. The second is a more

complex scenario that focuses on improving the user experience of

the system in terms of job processing latency. It was used to demon-

strate how to easily combine the testbed with machine learning

models and with the TensorFlow framework.

The implemented examples demonstrated the versatility and

usefulness of the testbed artifact for further research in this domain.

The greatest concern of current implementation (albeit in Python)

is performance, especially when the TensorFlow model was used

in the dispatcher to make predictions of the job duration. The issue

at hand is that the jobs are being dispatched one by one, which

limits the performance of TensorFlow since it is oriented on batch

processing. We are planning to address this issue in our future

work.

The whole artifact and its documentation are publicly available

on GitHub (https://github.com/smartarch/simdex).

ACKNOWLEDGMENT

This work was supported by the Czech Science Foundation project

20-24814J and by Charles University institutional funding SVV

260451.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Simdex: A Simulator of a Real Self-adaptive Job-dispatching System Backend SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[2] Cornel Barna, Hamoun Ghanbari, Marin Litoiu, and Mark Shtern. 2015. Hogna:
A Platform for Self-adaptive Applications in Cloud Environments. In Proceedings
of SEAMS 2015, Florence, Italy. IEEE Press, 83–87. https://doi.org/10.1109/SEAMS.
2015.26

[3] Wito Delnat, Eddy Truyen, Ansar Rafique, Dimitri Van Landuyt, and Wouter
Joosen. 2018. K8-scalar: A Workbench to Compare Autoscalers for Container-
orchestrated Database Clusters. In Proceedings of SEAMS 2018, Gothenburg, Swe-
den. ACM, 33–39. https://doi.org/10.1145/3194133.3194162

[4] Tejun Heo. 2015. The Linux kernel Documentation: Control Groups v2. https:
//www.kernel.org/doc/Documentation/cgroup-v2.txt

[5] Pavel Jezek, Michal Malohlava, and Tomas Pop. 2013. Automated evaluation of
regular lab assignments: A bittersweet experience?. In Proceedings of CSEE&T
2013, San Francisco, CA, USA. IEEE, 249–258. https://doi.org/10.1109/CSEET.2013.
6595256

[6] Jeffrey Kephart and David Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (2003), 41–50.

[7] Martin Kruliš, Jan Buchar, Martin Polanka, and Petr Stefan. 2016. ReCodEx: Code
Examiner. https://github.com/ReCodEx

[8] Gabriel A. Moreno, Bradley Schmerl, and David Garlan. 2018. SWIM: An Ex-
emplar for Evaluation and Comparison of Self-adaptation Approaches for Web
Applications. In Proceedings of SEAMS 2018, Gothenburg, Sweden. ACM, 137–143.
https://doi.org/10.1145/3194133.3194163

[9] Henry Muccini and Karthik Vaidhyanathan. 2019. A Machine Learning-Driven
Approach for Proactive DecisionMaking inAdaptive Architectures. InCompanion
Proceedings of ICSA 2019, Hamburg, Germany. 242–245. https://doi.org/10.1109/
ICSA-C.2019.00050

[10] DannyWeyns and Radu Calinescu. 2015. Tele Assistance: A Self-adaptive Service-
based System Examplar. In Proceedings of SEAMS 2015, Florence, Italy. IEEE Press,
88–92. https://doi.org/10.1109/SEAMS.2015.27

[11] B. Zhang, F. Krikava, R. Rouvoy, and L. Seinturier. 2017. Hadoop-Benchmark:
Rapid Prototyping and Evaluation of Self-Adaptive Behaviors in Hadoop Clusters.
In Proceedings of SEAMS 2017, Buenos Aires, Argentina. 175–181. https://doi.org/
10.1109/SEAMS.2017.15

