
GraphLingo: Domain Knowledge Exploration by
Synchronizing Knowledge Graphs and Large

Language Models
Duy Le

Case Western Reserve Univ.
dhl64@case.edu

Kris Zhao
Case Western Reserve Univ.

kxz167@case.edu

Mengying Wang
Case Western Reserve Univ.

mxw767@case.edu

Yinghui Wu
Case Western Reserve Univ.

yxw1650@case.edu

Abstract—Knowledge graphs (KGs) are routinely curated to
provide factual data for various domain-specific analyses. Nev-
ertheless, it remains nontrivial to explore domain knowledge
with standard query languages. We demonstrate GraphLingo,
a natural language (NL)-based knowledge exploration system
designed for exploring domain-specific knowledge graphs. It
differs from conventional knowledge graph search tools in that
it enables an interactive exploratory NL query over domain-
specific knowledge graphs. GraphLingo seamlessly integrates
graph query processing and large language models with a graph
pattern-based prompt generation approach to guide users in
exploring relevant factual knowledge. It streamlines NL-based
question & answer, graph query optimization & refining, and
automatic prompt generation. A unique feature of GraphLingo
is its capability to enable users to explore by seamlessly switching
between a more ‘open’ approach and a more relevant yet
‘conservative’ one, facilitated by diversified query suggestions.
We show cases of GraphLingo in curriculum suggestion, and
materials scientific data search.

I. INTRODUCTION

Various domain-specific knowledge graphs (KGs) [1] [2]
have been curated to host factual knowledge about specific
topics rather than generic Web or common knowledge. Notable
examples include material science, healthcare and disease,
education, cybersecurity, biology, and chemistry. While knowl-
edge curation has been extensively studied, searching and
annotating domain data remains nontrivial. Domain experts
are still expected to write complex declarative queries (such
as SPARQL), or data scripts to parse their requests, in order to
access the KGs. There is a gap between the need of accessing
KGs with (domain) languages and optimized performance of
query processing within state-of-the-art KG data systems.

The emergence of large language model (LLM), such as
GPT [3], provides promising capabilities in generating natural
language solutions in response to users’ prompts. Although
desirable, LLMs often fall short at verifying the truth of
the generated results and may produce false statement that
do not reflect commonsense or scientific facts (known as
“Hallucination”). Furthermore, they have limited capacity to
reason without proper contextualized domain knowledge.

In response, the possibility of bridging KGs and LLMs has
attracted increasing interest. For example, advanced LLMs like
GPT-4 [3] and PaLM [4] is allowed to browse Web knowledge
and learn from a broader context by recent effort studying the

coupling of knowledge graphs and LLMs [5]. On one hand,
LLMs can be enhanced with KGs to provide answers with
more contextualized facts. On the other hand, fundamental
tasks such as KG curation, embedding, and search can also
benefit by adopting LLMs. Can we have a system that marries
the merits of both directions, to enable domain knowledge
exploration with natural language style Q&A?
GraphLingo. We demonstrate GraphLingo, a system that
synchronizes domain-specific KGs and LLMs to guide users in
exploring domain knowledge with natural language. It differs
from prior systems with the following unique features.
Automatic Prompt Generation. GraphLingo uses an automatic
prompt generation algorithm to bridge NL responses of LLMs
and graph search. Inspired by Query-By-Example (QBE) [6],
it transforms NL questions into triple templates (graph pattern
queries), and jointly exploit graph topological properties and
textual representations as “examples” to generate in-context
prompts and request NL responses from LLMs.
Preference-aware Exploration. GraphLingo allows users to
pose ad-hocly a tunable preference, to explore factual knowl-
edge (a) in a more “explorative” manner with open-ended
questions and results from external Web knowledge in LLM, or
(b) be more “conservative”, favoring more in-context questions
and answers in KG search. This is enabled by a diversified
prompting strategy which leads to the generation of more in-
context or open-end queries and answers. The desired feature
in turn lets users explicitly control their knowledge preference.
Visual Exploration with Graph Views. GraphLingo supports a
dual-design of interface that illustrate (1) NL-based conversa-
tional interface, and simultaneously, (2) a fraction of facts that
are responsible for the generated results. This allows a visual
explanation of the NL-based question & answer process.
Scalability. GraphLingo adopts a parallel computation friendly
design and allow effective multi-query optimization and paral-
lelism, to support large-scale diversified exploration efficiently.

A proof-of-concept system of GraphLingo is available [7].
We next provide an overview of its workflow with major
modules (Section II) and the architecture (Section III).

II. FRAMEWORK OVERVIEW

We start with several notations used by GraphLingo. (1) A
(knowledge) graph G is a set of triple statements E in the



Fig. 1: GraphLingo Workflow

form of <s, r, o>, where s and o are two (attributed) nodes
that refer to two real world entities, and r is a relation between
s and o. (2) A graph pattern query is a graph Q as a set of
triple template. A triple template eQ parameterizes a triple
<s, r, o> by assigning one or all of s, r and o a variable
(denoted by ?, e.g., ?s) to indicate an output set, which refers
to the “matches” of eQ in terms of graph pattern matching such
as subgraph isomorphism. (3) A language model LLM L is a
function that takes as input a prompt and generates a natural
language answer ANL. (4) A prompt P is a NL statement
that follows a general template of context description, a set
of examples, and a task description. GraphLingo generates
prompt templates by instantiating a set of prompts that specify
NL statements and triple expressions.

Example 1: Consider the task that requests to transform an
NL statement to a graph pattern query. A fraction of prompt
P1 generated by GraphLingo is shown below1:

Example: ‘What are the topics of CSDS 310?’ has an equivalent
graph query: [[‘?:Topic’,‘of’, ‘CSDS 310’]].
Task: What is the graph query equivalent to ‘What professor is
teaching Data Mining?’

Setting LLM as ChatGPT, we get correct answer as
“[[‘?:Professor’,‘teaches’, ‘Data Mining’]]”.

A. GraphLingo Workflow

GraphLingo works with a domain-specific knowledge graph
G and a pre-trained LLM model L, and four major functional
modules that enables multi-session domain knowledge explo-
ration. Each session starts with an input NL question QNL

from a queryer, and performs three steps to yield a set of NL
answers ANL, along with a set of suggested NL questions
Q′

NL, to promote the next session of exploration.

Query Extraction. Upon receiving a NL query QNL,
GraphLingo uses a QueryExtractor module (denoted as MQ)
to translate QNL into an initial graph pattern query QI with
a set of triple templates EI

Q. This step incurs the first round
of communication between module MQ and the LLM model
L (e.g., ChatGPT), which (1) consults a bridging prompt

1Prompts are plain text; we underlined the structures for ease of reading.

generator modular MP to produce a set of prompts P1, and
(2) feed P1 to L to obtain QI in the form of EI

Q.

P1 ←MQ(MP , QNL)

EIQ ← L(P1)

Query Transformation. Upon receiving graph query QI ,
GraphLingo next invokes a QueryTransformer module, de-
noted as MQT , to transform QI (as EI

Q) to a set of triple
templates EQ (and accordingly, a query set Q) that are more
semantically relevant to G (see “Query Transformer”).

This step incurs a second round of communication be-
tween module MQX and the LLM model L. In this process,
MQX adopts a novel Pattern-of-Thought Prompting (PoT)
that extends Chain-of-Thought (CoT) [8], which exploits the
topology and connectivity of graph pattern queries to generate
prompts (see “Prompt Generator”).

Pi
2 ←MQX(MP , Q

Ii)

EiQ ← L(Pi
2)

Query Processing and Suggestion. GraphLingo then invokes a
LLM-enhanced QueryProcessor Module MS to process the
queries and obtain both their answers ANL and suggested
queries Q′

NL. This completes the third round of communi-
cation, between the query processor Ms and L.

Qi(G)←MS(Qi)(in parallel)
L(EQ)←Ms(MP , EQ)

(ANL, Q
′
NL)←Ms(Q(G) ∪ L(EQ))

Knowledge Augmentation. An (optional) post processing step
is then performed to augment KG G with the statements
from L(EQ) (via an augmentation operator ⊕). This step
(characterized as Gi+1 = Gi ⊕ L(EQ)) can be performed via
additional validation by domain experts.

At this step, users can choose from a suggested query from
Q′

NL or issue a new question to start the next session. Below
we summarize the computation of GraphLingo.

Example 2: Consider a student exploring a curriculum KG
G with an initial question QNL: “What professor is teaching
Data Mining?” and prefers a more “conservative” explo-
ration. GraphLingo responds in a single session as follows.
(1) It exploits LLM (ChatGPT by default) with a prompt
(P1) in Example 1, and translates QNL into a graph query
QI with a single triple template EI

Q={(?:Professor, teaches,
Data Mining)} (step 1). (2) QI is then further refined to a
set of relevant queries Q (step 2). One top ranked query
Qi contains a path with two triple templates (?:Professor,
instructorOf,?:Course) and (?:Course, hasTopic, Data Mining)
under e.g., ontological edge to path transformation [9], which
is more likely to have in-context matches in G. (3) GraphLingo
then performs both graph search in G as well as an “open-
ended” search with ChatGPT, and selects a top in-context
answer as a path (J.Ma, instructorOf, CSDS 435), (CSDS 435,
hasTopic, Data Mining). Meanwhile, it generates exploration



Fig. 2: GraphLingo Architecture

questions by jointly diversifying triple templates from KG and
LLM, such as an “in-context” question: “What CSDS courses
have the topic Knowledge Graph?” and a more “open-ended”
question “What is the relationship between Data Mining and
Machine Learning?” for users to choose.

B. Modules and Algorithms

Prompt Generator (MP ). This module plays a central role
and is invoked by all other three modules. For communication
steps (1) and (3), it follows the Prompt template P1 and P3

to generate corresponding prompts.

Prompt (Template) P1: Examples of pairs {Qi
NL, EIQ} Task:

Extrapolate a graph query equivalent to: (input NL query QNL)

Prompt (template) P3: Context: Description of triples e ∈ EQ;
Task: Based on the given context, answer QNL.

For step (2) with input graph pattern QI as triple templates
EI
Q, it follows a “Pattern-of-thought” (PoT) strategy, to best

guide LLM to reasoning following paths as follows. (1) It
starts by prompting L to reason from a “start node” (a variable
node by default), and dynamically induces a set of weighted
neighboring triples to be processed. The weight w(eQ) for a
triple template eQ is estimated by a holistic aggregation of
its processing cost, semantic closeness to G, and the amount
of new information it may introduce if processed. (2) It
follows a weighted spanning tree algorithm to dynamically
induce the weighted triple templates as a sub-pattern, and use
prompt template P2 to generate up to a bounded number of
prompts. This mechanism enables LLM to comprehend the
intricate relations between entities within the subgraphs, hence
providing more “in-context” examples and prompts.

Prompt (Template) P2: Context: Description of each triple
template eIQ ∈ EIQ;
Description of neighbors of eIQ ∈ G;
Description of transformations (e.g., ontology transformations);
Description of EIQ’s constraint
Examples of identified transformation pairs
Task: Stepwise reasoning about context and exemplars; Give
top-k transformed queries.

Query Transformer (MQT ). This module maps QI to a
query space that aligns better with G. It transforms each triple
of QI by applying a predetermined set of transformation func-

tions [9], then prompts LLM through the Prompt Generator
with prompt P2 to step-by-step reason about each possible
transformation and determine the best one.

Example 3: Continuing with the task transforming EI
Q =

{(?:Professor, teaches, Data Mining)}. A fraction of P2,
automatically generated by MP is given as follows:

Context: CSDS 435 is a 3-cred course: Data Mining. CSDS 435
has Topic: Data Mining, Topic:Cluster Analysis and (is) taught
by Prof. J.Ma. A Professor (is) an instructor of a Course that has
a Topic. EIQ is finding a professor teaches Data Mining.
Examples: Ontological transformation indicates {(?:Professor,
teaches, data mining)} can transform to {(?:Professor, instruc-
torOf,?:Course), (?:Course, hasTopic, Data Mining)}
Task: Step-wise reasoning about each node, edge, and the rela-
tional structure given in context. Then based on that, continue
to reason about provided examples. Finally, determine top-k best
transformed queries.

LLM enhanced Query Processor (MS). This module applies
parallel graph query processing to obtain the matched triples
Q(G) over the query load Q (supported by graph databases).
Meanwhile, it treats LLM L as a “query processor”, and
directly requests to transform the extended queries (as triple
templates EQ) to a set of triple statements L(EQ) “in the wild”
inherently from L’s external knowledge. GraphLingo then
performs a diversified selection over the union Q(G)∪L(EQ)
that conforms to user’s preference on “exploratory”, by max-
imizing a bi-criteria function (1− λ)

∑
e∈Q(G) rev(e,Q) + λ∑

e∈L(EQ) sim(e,Q). Here function rev (resp. sim) quantifies
the semantic closeness measure of Q(G) (resp. similarity of
the representations of those found by LLM on Web) with Q.

III. ARCHITECTURE

GraphLingo is built upon a three-tier architecture, as illus-
trated in Fig.2 and conceptually presented in Figure 1. (1)
Users engage GraphLingo through an interactive GUI that is
built in Angular framework, extended to support an interactive
visual knowledge graph (KG) panel (Fig. 3). (2) At the core
of GraphLingo are graph exploration modules deployed using
Django and Docker, serving as a bridge between pluggable
knowledge graph and a Language Model (LLM). The KG is
stored using Neo4j graph database. We adopt GPT 3.5 in our
demo. Hugging Face models are utilized to furnish encoded
similarity measurements within the modules. (3) We also
optimize the system by storing session history in DynamoDB.
This not only helps accelerating query processing by accessing
past queries views, but also allows a “rewind” to re-explore
from a certain timestamp. We report the details in [7].

IV. DEMONSTRATION OVERVIEW

Set up. We demonstrate GraphLingo through an interactive
Q & A session, navigating a real-world, specialized academic
information KG from the Department of Computer and Data
Sciences at Case Western Reserve University. This KG encom-
passes diverse academic information, including details about
courses, professors, and degrees. We also showcase application
of GraphLingo in material science search with a specialized
XRD data, scripts and workflows KG from CRUX [1].



(a) Academic KG Exploration: In-context vs. Exploratory (b) Material Science KG Exploration
Fig. 3: GraphLingo Interface: Natural Language Q & A with Knowledge Graph View

NL-based Domain-Knowledge Exploration. We invite users
to explore the academic KG through the interactive Q&A
interface of GraphLingo. Users can effortlessly input their
exploration queries in natural language. GraphLingo subse-
quently processes the queries automatically through a series
of continuous interactions with the KG and LLM. The results
are then presented in natural language for novice users, while
professional users can engage with the visual graph interface
to gain a more nuanced understanding for exploration.

Exploring with preference tuning. Users may not be satisfied
with the provided answers that are either too “constrained”
or too “open-end”. We invite users to experience the ad-hoc
tuning of GraphLingo to let it output answers and suggest
questions towards more desired preference, with a simple
“slide and play” action, and let them observe the difference.

Example 4: Figure 3a showcases preference tuning. (1) With
a more conservative manner, i.e. λ = 0.01, GraphLingo
prefers “in-context” answer with courses directly related to
‘graph data’ like Data Structures or Web Data Mining. A
more explorative preference, where λ = 0.6, included Data
Science System and Senior Project, which involve ‘graph data’
in a different perspective, such as subtopics including graph
visualization, based on inferred context from the KG.

Online academic advising. In this scenario, we invite users
to experience how GraphLingo supports a new data science
education program as a chatbot application. Knowing little
about the syllabus of the many newly opened courses, students
start with vague questions such as “what to learn to know more
about AI?” GraphLingo will guide them through course infor-
mation, study plan and advisor information, among others, by
exploring curriculum knowledge graph enhanced with GPT.

This helps students retrieve desired knowledge, ranging from
detailed courses to more open-end questions.
Material Scientific Data Search. In our second scenario, we
invite users to explore factual materials science knowledge
from X-ray diffraction (XRD) data analysis, and in partic-
ular, peak analysis. Supported by a crowd-sourced domain-
specific materials knowledge graph (CRUX) [1], GraphLingo
will support more in-context questions to help material data
scientists find the datasets, filtering specific peak locations, and
experimental setting (e.g., temperature ranges), or help general
public to obtain common knowledge by LLM from Web.

ACKNOWLEDGMENT

This work is supported by NSF under CNS-1932574, CNS-
2028748 and OAC-2104007.

REFERENCES

[1] M. Wang, H. Ma, A. Daundkar, S. Guan, Y. Bian, A. Sehirlioglu, and
Y. Wu, “Crux: Crowdsourced materials science resource and workflow
exploration,” in CIKM, 2022.

[2] Y. Li, V. Zakhozhyi, D. Zhu, and L. J. Salazar, “Domain specific
knowledge graphs as a service to the public,” in KDD, 2020.

[3] OpenAI, “Gpt-4 technical report,” in ArXiv, 2023.
[4] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, and et al., “Palm:
Scaling language modeling with pathways,” in ArXiv, 2022.

[5] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying large
language models and knowledge graphs: A roadmap,” in ArXiv, 2023.

[6] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” in TKDE, 2015.

[7] D. Le, K. Zhao, M. Wang, and Y. Wu, “Graphlingo(full version),” 2023.
[Online]. Available: https://github.com/Escanord/GraphLingo

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in NeurIPS, 2022.

[9] S. Yang, Y. Wu, H. Sun, and X. Yan, “Schemaless and structureless graph
querying,” in PVLDB, 2014.


